Calculus I
First course in a three-semester calculus sequence, this course covers differential calculus through the study of limits, continuity, differentiation, applications of differentiation, and an introduction to integration.
First course in a three-semester calculus sequence, this course covers differential calculus through the study of limits, continuity, differentiation, applications of differentiation, and an introduction to integration.
First course in a three-semester calculus sequence, this course covers differential calculus through the study of limits, continuity, differentiation, applications of differentiation, and an introduction to integration.
First course in a three-semester calculus sequence, this course covers differential calculus through the study of limits, continuity, differentiation, applications of differentiation, and an introduction to integration.
Trigonometric functions and their graphs; trigonometric identities and equations; inverse trigonometric functions; solving triangles; complex numbers.
Real functions and their graphs; one-to-one and inverse functions; polynomial, rational, exponential and logarithmic functions; complex numbers and zeros of polynomials; linear systems and matrices; geometric transformations and conic sections; topics in discrete mathematics.
Real functions and their graphs; one-to-one and inverse functions; polynomial, rational, exponential and logarithmic functions; complex numbers and zeros of polynomials; linear systems and matrices; geometric transformations and conic sections; topics in discrete mathematics.
Real functions and their graphs; one-to-one and inverse functions; polynomial, rational, exponential and logarithmic functions; complex numbers and zeros of polynomials; linear systems and matrices; geometric transformations and conic sections; topics in discrete mathematics.
Descriptive statistics: organization of data, sample surveys, experiments and observational studies, measures of central tendency and dispersion, correlation, regression lines, and analysis of variance (ANOVA). Probability theory. Random variables: expected value, variance, independence, probability distributions, normal approximation. Sampling: sampling distributions, and statistical inference, estimating population parameters, interval estimation, standard tests of hypotheses.
Linear, quadratic, algebraic, exponential, and logarithmic functions, interest and ordinary annuity problems; introduction to differential and integral calculus of one variable with applications to business and economics.
Linear, quadratic, algebraic, exponential, and logarithmic functions, interest and ordinary annuity problems; introduction to differential and integral calculus of one variable with applications to business and economics.