## OUTCOMES \& ASSESSMENT

General Education Learning Outcome (GELO) Assessment
CCSF Area A: Communication \& Analytical Thinking
Course Completion and SLO Data Fall 2018 - Spring 2023
Assessment Report, Spring 2024
Contents
General Education Learning Outcome (GELO) Assessment
CCSF Area A: Communication \& Analytical Thinking
Executive Summary
Introduction
CCSF Area A Requirement Outcome Mapping
Data Analysis and Discussion
Overall Outcome Assessment Results
Count of Assessments
Results of Assessments (overall)
Results Disaggregated by Sub-Element, fall 2018-spring 2023.
Area A GELO Results
Results Disaggregated by Demographics
Age and Dual Enrollment Status
Ethnicity/Race
Sex/Gender
Equity Populations, disaggregated by type
Equity Populations, collectively
Cross-tabulation of age and equity status
Course Completion Data Compared with SLO Attainment Data
Synthesis of Discussion and Conclusions
Any recommendations to changes of wording.
APPENDICES

## Executive Summary

- Overall, 150,216 assessments of SLOs mapped to Area A were analyzed in this report, drawn from ten semesters (fall 2018 - spring 2023), with an overall proficiency of $79.2 \%$ "meets SLO". This includes 58,216 assessments in Area A Mathematics courses (with a proficiency of $71.1 \%$ ) and 91,500 non-Mathematics courses in Area A (with a proficiency of $84.5 \%$ ).
- Mathematics courses in Area A were broken out from the rest of Area A in most areas of this analysis because the data (about a third of all the assessment data in Area A) showed a different pattern. While overall proficiency in Mathematics courses was lower, it also showed a trend toward improvement during the study period, distinct from the performance of non-Mathematics courses. In the analysis by demographic groups, there were also some distinct patterns between Mathematics and the non-Mathematics courses in Area A. It should be noted that a few of the non-Mathematics courses actually teach math (e.g., statistics, business math), but are not in the Mathematics department and therefore are grouped with the non-Mathematics courses in Area A.
- Enrollments in this period totaled 82,398 students in Area A ( 25,435 in Mathematics courses and 56,963 in non-Mathematics courses). With over 150,000 SLO assessments for the period, this means there was more than 1 assessment per student per Area A.
- The percentage of students meeting the SLOs in this four-year period was higher than that reported in the prior GELO assessments ( $79 \%$ in 2024, compared to $74 \%$ in 2018 and $66 \%$ in 2014). We do not have data on what factors may have contributed to this increase in learning.
- Among the Mathematics courses in Area A, we saw a pattern of generally increasing SLO proficiency over the time period, including through the pandemic (see Table 5), and course success rates in Mathematics courses also improved (see Table 22) - a very positive trend. However, course success for students in equity populations did not improve as much as it did for students not in equity populations, so the opportunity gap in course success increased slightly during the study period (from 8-9\% pre pandemic to around $10 \%$ now). The opportunity gap in SLO attainment in Mathematics courses did not increase; it hovered around $7 \%$ in the study period (see Table 18).
- Among the non-Mathematics courses in Area A, we saw a different pattern, with a steady high level of SLO attainment over the time period (see Table 5), yet a decrease in course success (see Table 23), with students from equity populations more affected by the decrease in course success, especially during the pandemic semesters. The opportunity gap in course success wobbled around $8 \%$, without a clear trend of increasing or decreasing. The opportunity gap in SLO attainment in non-Mathematics courses remained stable throughout the period, at 4-5\% (see Table 19).
- Patterns of attainment among the sub-elements in Area A varied (see Tables 6-8).
- Attainment of the 3 sub-elements in Area A was highly consistent within each of the two divisions of Area A courses - proficiency of $70-71 \%$ for Mathematics
courses and proficiency of 84-85\% for non-Mathematics courses.
- For the Mathematics courses, proficiency was highest for the sub-element "Apply the principles of language toward logical thought" (71.8\%), while for the nonMathematics courses, proficiency was highest for the sub-element "Evaluate communications in whatever symbol system is employed" (85.1\%).
- Students in equity populations attained proficiency in the individual sub-elements at a lower level than the enrolled students, as a whole, reflecting the opportunity gap in Area A (and in the college as a whole); the gap was consistent across subelements, with students in equity populations attaining the highest percentage of proficiency on the same sub-elements as the Area A student population overall. That is, we did not identify a specific sub-element that had a larger or smaller gap, or a different pattern of attainment for students in equity populations, which might have pointed to specific competencies within Area A that contribute to the opportunity gap.
- Demographic data provided additional information on the opportunity gaps in Area A.
- The overall opportunity gap for SLO proficiency among students from equity populations is $7 \%$ for Mathematics courses and $5 \%$ for non-Mathematics courses.
- That gap is not even across all age groups, however. Younger students from equity populations are most affected. While for Mathematics courses, there is also a gap for students aged 50-59 and 35-39, far and away the largest number of students impacted by the opportunity gap in Mathematics are under 25. For non-Mathematics courses, students under 25 are the only age group impacted by an opportunity gap.
- Age alone is also a significant factor in understanding opportunity gaps. As shown in Tables 9 and 10, students under 25 are meeting proficiency in the SLO at much lower rates. When membership in an equity population is cross tabulated (see Tables 20 and 21), it's evident that the youngest students both in and out of equity populations are not attaining proficiency at a rate within $3 \%$ of the average of all students. To perhaps state more clearly, there is an age-based opportunity gap for the youngest students across the college, a gap which is even greater among young equity populations. However, one group of young students is attaining proficiency at a higher level- dual enrollment students (see Table 11).
- Opportunity gaps persist along ethnic/racial lines, as well. Black/African American, Latina/o/x, Pacific Islander, and Native American students all experience (over 3\%) opportunity gaps across both Mathematics and nonMathematics courses in Area A. Filipino/a/x students also experience opportunity gaps (over 3\%) in Mathematics, but not in non-Mathematics courses, in Area A.
- In terms of sex/gender, while men/male students meet the SLO at a slightly lower rate, it does not rise to the level of an opportunity gap ( $3 \%$ difference from
average of all students) in Mathematics courses, and in non-Mathematics courses, the gap is exactly $3 \%$. There is also no opportunity gap for nonbinary students.
- Students with disabilities and foster youth/former foster youth experienced an opportunity gap in both Mathematics and non-Mathematics courses in Area A.
- Veterans experienced an opportunity gap in non-Mathematics courses in Area A, only.
- Faculty discussion of the data charts in this report raised a number of questions at a more granular level than the data in this report can answer about what goes into supporting student learning and course success and what can aid in closing opportunity gaps (see Discussion section).


## Introduction

This report presents the findings of the third assessment of General Education Area A, Communication \& Analytical Thinking. This report is part of an ongoing effort, in accordance with the CCSF Institutional Assessment Plan, to regularly assess teaching and learning in individual General Education Areas. These reports are intended more specifically to document aggregate student learning outcome proficiency and course completion data, explore equity issues and opportunity gaps, and look more deeply at the outcomes and core concerns in the Area. This assessment process facilitates dialogue around teaching and assessment and helps to ensure the integrity of programs at CCSF.

Area A roughly aligns to the CSU Areas A1 and A3 and IGETC Areas 1B and 1C, although not all courses that meet CCSF Area A meet the corresponding areas for CSU and IGETC. Changes to Title 5 and the forthcoming CaIGETC changes have led to a reorganization of General Education at CCSF; as of Fall 2024, some of the courses currently in Area A will be in the new Area 1B, Communication and Critical Thinking, and others will be in the new Area 2, Mathematics and Quantitative Reasoning. Therefore, this is the last report that addresses Area A, as such.

Area A data showed a distinct pattern for Mathematics classes versus other classes in Area A. For this reason, the research department's analysis of Area A splits out the Mathematics courses from all other Area A. While this was a decision driven by the data, it also mirrors the future split of Area A into Areas 1B and Area 2 and may be useful for future comparisons when those areas are assessed. It must be noted that some Area A courses outside of the Mathematics department - including statistics courses PSYC 5, ECON 5, and LALS 5; business math BSMA 68; and technical mathematics ET 50 - are, in content, math courses. However, only courses in the Mathematics department are included in the tables labeled Mathematics.

Area A GE outcomes read as follows:
Upon completion of this coursework, a student will be able to:

1. Apply the principles of language toward logical thought.
2. Express ideas with clarity and precision.
3. Evaluate communications in whatever symbol system is employed.

Courses that meet Area A come from a range of departments, including Behavioral Sciences; Business; Career Development; Communication Studies; Computer Networking and Information Technology; Computer Science; Engineering \& Technology; English as a Second Language; Interdisciplinary Studies; Journalism; Latin American \& Latina/o/e/x Studies; Learning Assistance; Mathematics; Music; Philippine Studies; Social Sciences; and World Languages and Cultures.

This report includes a variety of quantitative data prepared by the Office of Research and Planning based on course completions and CRN-level SLO mastery levels for the Fall 2018 Spring 2023 period. Summer semesters were excluded. The SLO Coordination Team conducted faculty outreach in Area A during the Spring 2024 semester to supplement this numerical data with discussion, principally through a meeting held on March 6, 2024, plus a few additional conversations with departments that could not attend that day. The report results were also discussed with the SLO Committee of the Academic Senate. Comments in the report noted as being the views of faculty or staff may or may not reflect wider views.

## CCSF Courses that meet the CCSF, CSU and IGETC (UC) area requirements.

- CCSF courses that meet the CCSF Communication \& Analytical Thinking Requirement are listed in the 2022-2023 CCSF General Education Worksheet.
- CCSF courses that meet CSU Areas A1 and A3 are listed in the 2022-2023 CSU Transfer Worksheet.
- CCSF courses that meet IGETC 1B and 1C are listed in the 2022-2023 IGETC Transfer Worksheet.


## CCSF Area A Requirement Outcome Mapping

## Data considerations:

The mapping of outcomes from courses to GE areas is vetted during the curriculum approval process by the Curriculum Committee.

The following data describe student learning outcomes (SLO) assessment results for Area A, Communication and Analytical Thinking, of CCSF's General Education (GE) curriculum. This report covers primary terms (i.e. fall and spring terms) from Fall 2018 to Spring 2023. The data are disaggregated by department, mathematics vs. non-mathematics courses, and by student demographics.

Definitions of terms are included in the methodology section at the end of this memo.
Mathematics and non-mathematics courses show different trends in their assessment outcomes. Many of the figures and tables below separate Area A courses into those two categories.

The onset of the COVID-19 pandemic in Spring 2020 affected SLO assessment in several ways. For many sections, course modality changed from in-person to online/remote, and SLO assessment reporting was modified to accommodate remote instruction. Overall, the total
number of assessments decreased over the course of the pandemic. In general, the resulting data may not be directly comparable to prior semesters.

No confidence intervals or standard deviations are shown, because the data presented constitute the entire universe of data available for the period of the study; the data were not sampled, nor can they be considered a randomized sample for some larger universe. They offer a snapshot in time of student learning in Area A at the college.

## Follow-up on Recommendations in the 2018 Area A GELO Report

In the 2018 Area A GELO report few recommendations were made. The recommendations and subsequent actions taken are summarized below:

- The outcomes were revised to add clarity by relying more on the active voice.
- The 2018 report recommended "departments in Area A as well as other relevant bodies at the college use this Area A GELO Report to inform their discussions and efforts regarding expanding academic support systems, closing achievement gaps, contextualizing learning, accelerating pathways, and engaging in other evidence-based practices that support student success overall and student equity specifically.
- Tutoring, professional development, and other support strategies have been implemented, including embedded tutors in some Area A courses.
- Increasingly, the college has recognized that the opportunity gaps cannot be closed by tutoring or remediation alone, and the Student Equity Plan for 20222025 emphasizes race-conscious structural changes and instructional changes intended to close the gap.
- The 2018 report showed significant opportunity gaps for Latinx, Pacific Islander and African American students. These gaps persist in the current report.


## Data Analysis and Discussion

## Overall Outcome Assessment Results

In this section, we present the total counts of assessments in Area A and the breakdown of SLO assessment results. A brief analysis and summary of the comments from area faculty and/or the SLO Committee follow each set of tables and graphs.

## Count of Assessments

Table 1. Count of assessments in Area A. Communication \& Analytical Thinking, Fall 2018 Spring 2023 (primary terms, meaning not including Summer)

| Period relative to the pandemic | Term | Count of Assessments |
| :--- | :--- | :---: |
| Pre-Pandemic | Fall 2018 | 21,603 |
| Pre-Pandemic | Spring 2019 | 23,863 |
| Pre-Pandemic | Fall 2019 | 21,933 |
| During Pandemic | Spring 2020 * | 4902 |
| During Pandemic | Fall 2020 | 17,205 |
| During Pandemic | Spring 2021 | 16,137 |
| During Pandemic | Fall 2021 | 12,803 |
| During Pandemic | Spring 2022 | 10,589 |
| Transitioning out of Pandemic | Fall 2022 | 10,545 |
| Transitioning out of Pandemic | Spring 2023 | 10,636 |

Table 2. Department-level SLO counts and attainment in Area A: Communication and Analytical Thinking, Fall 2018 - Spring 2023 (primary terms)

| Department | Count of <br> Assessments | \% Met Outcome |
| :--- | :---: | :---: |
| Mathematics | 58,716 | $71.1 \%$ |
| World Languages and Cultures | 39,492 | $87.6 \%$ |
| Social Science | 13,925 | $76.2 \%$ |
| Communication Studies | 11,585 | $83.5 \%$ |
| Computer Science | 9,741 | $83.5 \%$ |
| Learning Assistance | 3,740 | $85.6 \%$ |
| Behavioral Sciences | 3,381 | $84.8 \%$ |
| Computer Networking \& InfoTech | 3,000 | $86.3 \%$ |
| Counseling Continuing Students | 1,497 | $93.9 \%$ |
| English As a Second Language | 1,453 | $85.3 \%$ |
| Business | 1,372 | $79.7 \%$ |
| Interdisciplinary Studies | 856 | $74.4 \%$ |
| Latin Am \& Latina/o/e/x Studies | 816 | $89.7 \%$ |
| Music | 320 | $80.0 \%$ |
| LGBT Studies | 124 | $93.5 \%$ |
| Journalism | 79 | $88.6 \%$ |
| Engineering \& Technology | 62 | $80.6 \%$ |
| Visual Media Design | 52 | $69.2 \%$ |
| Phys Education \& Dance | 5 | $\ddagger$ |
| Area A overall | 150,216 | $79.2 \%$ |

$\ddagger$ Data not displayed where count is less than 30 .

## Discussion and commentary on the number of assessments

- Total assessments include over 150,000 section-level assessments of student learning, more than twice as many as the last GELO assessments of Area A, which included around 66,000 . This increase occurred despite overall enrollment at the college having declined. This likely reflects that more semesters of data are included in the current report ( 10 semesters, versus 4 in the 2018 report).
- The count of assessments in Spring 2020 was lower than usual due to the lifting of the requirement to file SLO reports for that semester, as faculty and students alike adjusted to the global pandemic and remote delivery of classes. The number of assessments completed in later semesters within this study period were lower than prior to the pandemic, most likely reflective of lower enrollment at the college and a slight dip in the percent of faculty completing section-level SLO reports.
- In comparing SLO attainment in Area A across departments, there is some variation. Looking at the five departments that have over 5,000 assessments in this period, Mathematics is the lowest with $71.1 \%$ (and in fact, the Mathematics data is different enough that it is broken out from the rest of Area A in analyses below). Social Sciences is next with SLO attainment of $76.1 \%$. Communication Studies and Computer Science both show SLO attainment of $83.5 \%$, while World Languages shows $87.6 \%$. The range of SLO proficiency in Area A courses by department is from $69 \%$ to $94 \%$, a wide range which is unsurprising given the varied subject matter and circumstances that these departments operate with. (see Table 2)
- Discussion of the results of assessments follows the next set of tables and figures.


## Results of Assessments (overall)

In reviewing the assessment data for Area A, the researchers in the Office of Research and Planning noted a salient trend: the outcomes for Mathematics courses (a sizeable portion of Area A) followed a different trend than the other courses in Area A. For this reason, they made a decision to analyze and present the data broken out by courses in the Mathematics department and all other Area A courses.

As noted in Methodology above, this means that some courses that actually do teach math but are not in the Mathematics department (such as statistics courses taught in Economics, Psychology, and LALS and a Business math course) are clustered with the non-Mathematics courses.

Table 3. Mathematics vs. non-mathematics courses' SLO assessment attainment levels in Area A: Communication and Analytical Thinking, Fall 2018 - Spring 2023 (primary terms)

| Assessment Level | Meets <br> SLO | Developing <br> SLO | No evidence <br> of SLO | Total |
| :--- | :---: | :---: | :---: | :---: |
| Area A - Mathematics | $71.1 \%$ | $16.7 \%$ | $12.2 \%$ | $100 \%$ |
| Area A - Non-Mathematics | $84.5 \%$ | $10.2 \%$ | $5.3 \%$ | $100 \%$ |
| Area A - Overall \% | $79.2 \%$ | $12.8 \%$ | $8.0 \%$ | $100 \%$ |


| Assessment Level | Meets <br> SLO | Developing <br> SLO | No evidence <br> of SLO | Total |
| :--- | :---: | :---: | :---: | :---: |
| Area A - Overall Number of <br> assessments | 119,026 | 19,156 | 12,034 | 150,216 |

Figure 1. Percentage breakdown of mathematics vs. non-mathematics courses' SLO assessment attainment levels in Area A: Communication and Analytical Thinking, Fall 2018Spring 2023 (primary terms)


Note: Figure 1 and Table 3 present the same data in two different ways.
Table 4: Comparison of SLO attainment over time: SLO Attainment in Area A as reflected in the current and past GELO reports at CCSF. ${ }^{1}$

| Assessment Level | Meets SLO | Developing SLO | No Evidence of <br> SLO | Total SLO <br> assessments |
| :---: | :---: | :---: | :---: | :---: |
| 2014 Area A report | $66 \%$ | $24 \%$ | $10 \%$ | 4,722 |
| 2018 Area A report | $74 \%$ | $16 \%$ | $10 \%$ | 66,206 |
| 2024 Area A report | $79 \%$ | $13 \%$ | $8 \%$ | 150,216 |

[^0]Table 5. Mathematics vs. non-mathematics courses' SLO assessment counts and attainment in Area A: Communication and Analytical Thinking Fall 2018 - Spring 2023 (primary terms)

| Term | Area A Mathematics Count of assessments | Area A - <br> Mathematics \% met outcome | Area A Mathematics Count of assessments | Area A -NonMathematics \% met outcome | Area A -NonMathematics Count of assessments | Area A -NonMathematics \% met outcome |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fall 2018 | 7,364 | 64.7\% | 14,239 | 83.0\% | 21,603 | 76.7\% |
| Spring 2019 | 9,322 | 67.9\% | 14,541 | 84.0\% | 23,863 | 77.7\% |
| Fall 2019 | 9,606 | 68.6\% | 12,327 | 84.9\% | 21,933 | 77.8\% |
| Spring 2020 * | 1,730 | ** | 3,172 | ** | 4,902 | ** |
| Fall 2020 | 7,588 | 73.4\% | 9,617 | 84.7\% | 17,205 | 79.7\% |
| Spring 2021 | 6,368 | 76.4\% | 9,769 | 85.0\% | 16,137 | 81.6\% |
| Fall 2021 | 5,700 | 71.5\% | 7,103 | 86.9\% | 12,803 | 80.0\% |
| Spring 2022 | 5,130 | 77.2\% | 5,459 | 85.7\% | 10,589 | 81.6\% |
| Fall 2022 | 2,910 | 70.9\% | 7,635 | 83.3\% | 10,545 | 79.9\% |
| Spring 2023 | 2,998 | 71.0\% | 7,638 | 85.0\% | 10,636 | 81.0\% |
| All terms | 58,716 | 71.1\% | 91,500 | 84.5\% | 150,216 | 79.2\% |

** Due to the stay-at-home order issued for the COVID-19 pandemic, and the resulting interruption to instruction, assessment outcomes during Spring 2020 cannot be directly compared to other terms.

## Discussion and commentary on the overall results of assessments

- On average, students demonstrated proficiency (met SLOs) in Area A at the rate of $79.2 \%$ in the study period. That breaks down to $71.1 \%$ for Mathematics courses in Area A, and $84.5 \%$ for all other courses in Area A. (see Table 3 and/or Figure 1)
- As evident in Table 4 each subsequent GELO report over the last decade has included significantly more assessment data, and there is a general tendency toward increasing SLO attainment ( $66 \%$ in 2014; $74 \%$ in 2018; $79 \%$ in 2024). As prior GELO reports did not break out the Mathematics department data, this comparison likewise does not.
- It may be relevant to look at the trend in the Math Requirement learning outcome assessment reports, however. The 2023 Math Requirement GELO report showed results similar to the Area A Mathematics courses - 72\% of students meeting the SLO, $16 \%$ developing, and $12 \%$ showing no evidence of the SLO (based on 11,821 assessments).
- That number was also trending upward, when compared to the 2017 Math Requirement report that showed $66 \%$ of students meeting the SLO.
- In other recent GELO reports, it was suggested that the rise in SLO attainment could be due, at least in part, to the shift to teaching online - something that could be affecting Area A attainment, as well. Specifically in the Mathematics courses, the acceleration of the math sequence and the innovations in teaching math (for example, offering support courses that accompany college-level math classes for students who are less well
prepared) may have contributed to increases in SLO attainment in Area A. It is also true that each GELO report is a "snapshot in time" - this data in this report, given the unusual circumstances of the pandemic, may simply not be comparable to past reports.
- The percentage of students meeting SLOs varied considerably across the different semesters, grouped as pre-pandemic, pandemic, and emerging from the pandemic (see Table 5)
- In the Mathematics courses, we see a trend toward increasing SLO attainment from percentages in the mid-60's pre-pandemic, to the mid-70's in the pandemic semesters, to the low-70's as we emerge from the pandemic. It is notable that SLO attainment, while not at its pandemic peak, has stayed higher than prepandemic levels.
- In the non-Mathematics courses, we don't see a trend toward improvement; rather, we see a fairly high level of SLO attainment that has been maintained through a difficult period and remains at a percentage in the mid-80's.


## Results Disaggregated by Sub-Element, fall 2018-spring 2023.

Table 6. Mathematics vs. non-mathematics courses' GELO assessment counts and attainment levels in Area A: Communication and Analytical Thinking Fall 2018 - Spring 2023 (primary terms) (Accessible tables 6a and 6b)

|  | Area A - Mathematics |  |  | Area A- Non-Mathematics |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Meets <br> SLO | Developing <br> SLO | No <br> evidence <br> of SLO | Total \# <br> Assess <br> ments | Meets <br> SLO | Developing <br> SLO | No <br> evidence <br> of SLO | Total \# <br> Assess <br> ments |
| 1. Apply the principles of <br> language toward logical <br> thought. | $71.8 \%$ | $16.1 \%$ | $12.1 \%$ | 18,261 | $83.8 \%$ | $10.7 \%$ | $5.6 \%$ | 35,450 |
| 2. Express ideas with clarity <br> and precision. | $70.5 \%$ | $16.9 \%$ | $12.6 \%$ | 24,310 | $84.8 \%$ | $10.0 \%$ | $5.2 \%$ | 28,596 |
| 3. Evaluate communications <br> in whatever symbol <br> system is employed. | $71.1 \%$ | $17.0 \%$ | $11.9 \%$ | 16,145 | $85.1 \%$ | $9.8 \%$ | $5.1 \%$ | 27,454 |
| Total \# Assessments | 41,722 | 9,816 | 7,178 | 58,716 | 77,304 | 9,340 | 4,856 | 91,500 |

Figure 2. Percentage breakdown of mathematics vs. non-mathematics courses' GELO assessment attainment levels in Area A: Communication and Analytical Thinking, Fall 2018 Spring 2023 (primary terms)


Table 7. Mathematics courses' GELO assessment counts and attainment by equity group status in Area A: Communication and Analytical Thinking Fall 2018 - Spring 2023 (primary terms)

| GELO | Not in equity <br> group <br> Count of <br> Assessment | Not in equity <br> group <br> \% met <br> outcome | In equity <br> group <br> Count of <br> Assessment | In equity <br> group <br> \% met <br> outcome | All <br> students <br> \% met <br> outcome | Percentage <br> Point Gap |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 1. Apply the principles of <br> language toward logical <br> thought. | 10,212 | $76.9 \%$ | 8,049 | $65.3 \%$ | -- | 0.06 |
| 2. Express ideas with clarity <br> and precision. | 13,281 | $75.9 \%$ | 11,029 | $64.0 \%$ | -- | 0.07 |
| 3. Evaluate communications <br> in whatever symbol <br> system is employed. | 8,856 | $76.5 \%$ | 7,289 | $64.5 \%$ | -- | 0.07 |
| Area A - Mathematics | 32,349 | $76.4 \%$ | 26,367 | $64.5 \%$ | $71.1 \%$ | 0.07 |

Table 8. Non-mathematics courses' GELO assessment counts and attainment by equity group status in Area A: Communication and Analytical Thinking Fall 2018 - Spring 2023 (primary terms)

| GELO | Not in equity <br> group <br> Count of <br> Assessment | Not in <br> equity <br> group <br> \% met <br> outcome | In equity <br> group <br> Count of <br> Assessment | In equity <br> group <br> $\%$ met <br> outcome | All <br> students <br> \% met <br> outcome | Percentage <br> Point Gap |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 1. Apply the principles of <br> language toward logical <br> thought. | 20,938 | $87.0 \%$ | 14,512 | $79.1 \%$ | -- | 0.05 |
| 2. Express ideas with clarity <br> and precision. | 17,049 | $87.9 \%$ | 11,547 | $80.3 \%$ | -- | 0.04 |
| 3. Evaluate communications <br> in whatever symbol <br> system is employed. | 16,278 | $88.1 \%$ | 11,176 | $80.6 \%$ | -- | 0.04 |
| Area A - non-Mathematics | 54,265 | $87.6 \%$ | 37,235 | $79.9 \%$ | $84.5 \%$ | 0.05 |

## Discussion and commentary on the overall results of sub-elements for Area A, mathematics and non-mathematics

- In Area A, the range of proficiency (meets SLO) was quite consistent across the three sub-elements for each of the two groupings of Area A courses (Mathematics and nonMathematics). Figure 2 illustrates this well. For the non-Mathematics courses the range was $83.8 \%$ to $85.1 \%$ proficiency, and for Mathematics courses the range was $70.5 \%$ to 71.8\% proficiency.
- The sub-element with the highest proficiency for non-Mathematics courses was "Evaluate communications in whatever symbol system is employed" and for Mathematics courses, it was "Apply the principles of language toward logical thought."
- The size of the percentage point gap between students in equity populations and those not in equity populations was also relatively consistent among sub-elements for Mathematics courses in Area A ( 0.06 to 0.07, or $6 \%-7 \%$ ) and for non-Mathematics courses in Area A ( 0.04 to 0.05 , or $4 \%-5 \%$ ). The gap was larger for Mathematics courses than non-Mathematics courses.


## Results Disaggregated by Demographics

In this section, we present data on SLO attainment by several demographic characteristics, including the following:

- Age and Dual Enrollment Status
- Ethnicity/race
- Sex/Gender
- Equity Populations, collectively and disaggregated by type
- Age cross tabulated with Equity Population


## Age and Dual Enrollment Status

Table 9. Mathematics courses' SLO assessment counts and attainment by student age group, Area A: Communication and Analytical Thinking, Fall 2018 - Spring 2023 (primary terms)

| Age Group | Count of assessments | \% met outcome |
| :--- | :---: | :---: |
| 19 or Less | 20,377 | $67.8 \%$ |
| $20-24$ | 18,318 | $68.6 \%$ |
| $25-29$ | 9,066 | $75.1 \%$ |
| $30-34$ | 5,035 | $78.4 \%$ |
| $35-39$ | 2940 | $75.4 \%$ |
| $40-49$ | 1975 | $82.5 \%$ |
| $50-59$ | 747 | $71.9 \%$ |
| $60+$ | 258 | $79.1 \%$ |
| All ages | 58,716 | $71.1 \%$ |

Table 10. Non-mathematics courses' SLO assessment counts and attainment by age group, Area A: Communication and Analytical Thinking, Fall 2018 - Spring 2023 (primary terms)

| Age Group | Count of assessments | \% met outcome |
| :--- | :---: | :---: |
| 19 or Less | 19,635 | $80.1 \%$ |
| $20-24$ | 22,622 | $81.7 \%$ |
| $25-29$ | 16523 | $85.5 \%$ |
| $30-34$ | 11280 | $87.5 \%$ |
| $35-39$ | 6875 | $89.3 \%$ |
| $40-49$ | 7019 | $89.2 \%$ |
| $50-59$ | 4257 | $88.0 \%$ |
| $60+$ | 3283 | $89.8 \%$ |
| All ages | 91,500 | $84.5 \%$ |

Area A - Non-mathematics includes 6 assessments for students with unknown demographic information.
Table 11. Dual enrollment students' SLO assessment counts and attainment, Area A:
Communication and Analytical Thinking, Fall 2018 - Spring 2023 (primary terms) (Accessible tables 11a and 11b)

|  | Dual Enrollment students |  | All students |  |
| :--- | :---: | :---: | :---: | :---: |
| Area A | Count of <br> assessments | \% met outcome | Count of <br> assessments | \% met outcome |
| Area A - Mathematics | 649 | $84.6 \%$ | 58,716 | $71.1 \%$ |
| Area A - Non- | 3,749 | $84.6 \%$ | 91,500 | $84.5 \%$ |
| Mathematics | $\mathbf{4 , 3 9 8}$ | $\mathbf{8 4 . 6 \%}$ | $\mathbf{1 5 0 , 2 1 6}$ | $\mathbf{7 9 . 2 \%}$ |
| Overall |  |  |  |  |

Dual enrollment data are preliminary and reflect current records captured by Banner. Note: all students in the Dual Enrollment category are dual enrollment students so noted in Banner; the category of All Students may also include some dual enrollment students who were not correctly identified as such in Banner, as practices for denoting dual enrollment have varied over time. The All Students category is not subdivided by age.

## Comments and analysis on age

- About two thirds of students assessed in Area A Mathematics classes are under age 25 ( $66 \%$ ), while less than half of students assessed in non-Mathematics Area A classes are under age 25 ( $46 \%$ ). This large population of younger students is also the age group with lowest proficiency (68-69\% in Mathematics courses, $80-81 \%$ in non-Mathematics courses).
- Across many GE Areas, we tend to see lower SLO proficiency among younger students, with roughly continuous improvement of attainment with age, sometimes dropping off in the oldest age groups. In the data presented above, we see a loose approximation of that pattern. For Mathematics courses, the highest proficiency is found among students aged 40-49, and for non-Mathematics courses, among students aged 60+.
- Looking specifically at the population of students age 19 and younger, a question was raised about whether the gap in SLO attainment reflected the experience of dual enrollment students concurrently enrolled in high school. However, as shown in Table 11, dual enrollment students tend to attain SLOs at a rate similar to CCSF students overall in non-Mathematics courses and at a rate higher than CCSF students overall in Mathematics courses. So, if SLO attainment is lower than desired among students age 19 and younger overall (or students 24 and under), it is not reflective of an influence of dual enrollment students, who generally are doing very well.


## Ethnicity/Race

Table 12. Mathematics courses' SLO assessment counts and attainment by ethnicity, Area A: Communication and Analytical Thinking, Fall 2018 - Spring 2023 (primary terms)

| Ethnicity/Race | Count of <br> Assessments | \% Met Outcome |
| :--- | :---: | :---: |
| American Indian or Alaska Native | 104 | $66.3 \%$ |
| Asian | 20,954 | $76.6 \%$ |
| Black or African American | 3007 | $57.9 \%$ |
| Filipino | 4,038 | $67.6 \%$ |
| Latino/a/x | 15,265 | $64.0 \%$ |
| Native Hawaiian or Other Pacific Islander | 440 | $59.3 \%$ |
| Two or more races | 3,477 | $71.5 \%$ |
| White | 9,787 | $75.7 \%$ |
| Unknown/Not reported /Other | 1,644 | $74.0 \%$ |
| All Ethnicities/Races | 58,716 | $71.1 \%$ |

The category 'Unknown/Not reported/Other' includes students self-identified as Middle Eastern
Table 13. Non-mathematics courses' SLO assessment counts and attainment by ethnicity, Area A: Communication and Analytical Thinking, Fall 2018 - Spring 2023 (primary terms)

| Ethnicity/Race | Count of <br> Assessments | \% Met Outcome |
| :---: | :---: | :---: |
| American Indian or Alaska Native | 204 | $73.5 \%$ |


| Ethnicity/Race | Count of <br> Assessments | \% Met Outcome |
| :--- | :---: | :---: |
| Asian | 28,648 | $87.5 \%$ |
| Black or African American | 4,979 | $75.4 \%$ |
| Filipino | 5,125 | $82.6 \%$ |
| Latino/a/x | 21,272 | $79.9 \%$ |
| Native Hawaiian or Other Pacific <br> Islander | 568 | $75.5 \%$ |
| Two or more races | 5,326 | $80.7 \%$ |
| White | 22,309 | $88.4 \%$ |
| Unknown/Not reported /Other | 3,069 | $86.3 \%$ |
| All Ethnicities/Races | 91,500 | $84.5 \%$ |

The category 'Unknown/Not reported/Other' includes students self-identified as Middle Eastern

## Comments and analysis on race/ethnicity

- Significant opportunity gaps persist across multiple groups of students, disaggregated by ethnicity/race.
- Black/African American, Latina/o/x, Pacific Islander, and Native American students all experience significant (over 3\%) opportunity gaps across both Mathematics and non-Mathematics courses in Area A.
- Filipino/a/x students also experience significant (over 3\%) opportunity gaps in Mathematics, but not in non-Mathematics courses, in Area A.
- Data on students' SLO proficiency by race/ethnicity and age, combined, is reported below.


## Sex/Gender

Table 14. Mathematics courses' SLO assessment counts and attainment by sex/gender, Area A: Communication and Analytical Thinking, Fall 2018 - Spring 2023 (primary terms)

| Sex/Gender | Count of Assessments | \% Met Outcome |
| :--- | :---: | :---: |
| Female/Woman | 27,064 | $73.1 \%$ |
| Male/Man | 29,985 | $69.2 \%$ |
| Nonbinary | 327 | $70.9 \%$ |
| Unknown/Not reported | 1,340 | $70.9 \%$ |
| All Sexes/Genders | 58,716 | $71.1 \%$ |

Table 15. Non-mathematics courses' SLO assessment counts and attainment by sex/gender, Area A: Communication and Analytical Thinking, Fall 2018 - Spring 2023 (primary terms)

| Sex/Gender | Count of Assessments | \% Met Outcome |
| :--- | :---: | :---: |
| Female/Woman | 45,904 | $86.8 \%$ |


| Sex/Gender | Count of Assessments | \% Met Outcome |
| :--- | :---: | :---: |
| Male/Man | 41,590 | $81.5 \%$ |
| Nonbinary | 756 | $87.6 \%$ |
| Unknown/Not reported | 3,244 | $89.0 \%$ |
| All Sexes/Genders | 91,500 | $84.5 \%$ |

Area A total includes 6 assessments for students with unknown demographic information.

## Comments and analysis on sex/gender

- While there is a difference in SLO attainment by sex/gender favoring women/female students, in Mathematics the differences are relatively small (less than a 3\% variation from the overall student average. In the non-Mathematics courses, a larger gap by sex/gender was identified, with men/male students at a disadvantage (a $3 \%$ equity gap).
- Nonbinary students did better than either men or women in the non-Mathematics courses, while in Mathematics courses, their proficiency fell between that of women/female and men/male students (as did those students whose gender is unknown). This is the first GELO report to analyze data on students who identify as nonbinary (or trans?) separate from the unknown/not reported category (in previous reports these categories were combined), it is anticipated that the data sets on nonbinary students will continue to grow, making it possible to better identify needs and strengths of this population.


## Equity Populations, disaggregated by type

Table 16. Mathematics courses' SLO assessment counts and attainment by select subpopulations, Area A: Communication and Analytical Thinking, Fall 2018 - Spring 2023 (primary terms)

| Student demographic group | Count of Assessments | \% Met Outcome |
| :--- | :---: | :---: |
| Foster youth and former foster youth | 647 | $57.8 \%$ |
| Veterans | 4,827 | $69.5 \%$ |
| Students with disabilities | 5,473 | $66.8 \%$ |
| Low-income students | 37,830 | $70.5 \%$ |
| All Student demographic groups | 58,716 | $71.1 \%$ |

Table 17. Non-mathematics courses' SLO assessment counts and attainment by select subpopulations, Area A: Communication and Analytical Thinking, AY 2018-23 (primary terms)

| Student demographic group | Count of Assessments | \% Met Outcome |
| :--- | :---: | :---: |
| Foster youth and former foster youth | 1,033 | $77.1 \%$ |
| Veterans | 6,336 | $77.5 \%$ |
| Students with disabilities | 7,176 | $78.6 \%$ |
| Low-income students | 45,868 | $82.6 \%$ |
| All Student demographic groups | 91,500 | $84.5 \%$ |

## Comments and analysis on equity populations by four demographic groups

- Foster youth and former foster youth experience a gap in both Mathematics and nonMathematics courses in Area A. While a small population, this group of students may need additional support (such as that available through Guardian Scholars) and resources. It is unknown if specific teaching approaches are especially beneficial for foster and former foster youth - something to investigate further.
- Students with disabilities experience an opportunity gap, also, in both Mathematics and non-Mathematics courses in Area A.
- Veterans experience an opportunity gap in non-Mathematics courses, but not in Mathematics courses.
- Low-income students (a group that includes more than half of all students in this Area A assessment) do not experience an opportunity gap as defined by the state.


## Equity Populations, collectively

Table 18. Mathematics courses' SLO assessment attainment and percentage point gap by equity group status, Area A: Communication and Analytical Thinking, Fall 2018-Spring 2023 (primary terms)

| Term | Not in student <br> equity group <br> $70.1 \%$ | Students in <br> equity group(s) | Overall | Percentage <br> Point Gap |
| :--- | :---: | :---: | :---: | :---: |
| Fall 2018 | $74.5 \%$ | $60.9 \%$ | $64.7 \%$ | 0.07 |
| Spring 2019 | $73.1 \%$ | $63.9 \%$ | $67.9 \%$ | 0.07 |
| Fall 2019 | $* *$ | $* *$ | $68.6 \%$ | 0.05 |
| Spring 2020 * | $77.6 \%$ | $67.4 \%$ | $73.4 \%$ | $* *$ |
| Fall 2020 | $81.1 \%$ | $70.3 \%$ | $76.4 \%$ | 0.06 |
| Spring 2021 | $77.3 \%$ | $63.7 \%$ | $71.5 \%$ | 0.06 |
| Fall 2021 | $80.9 \%$ | $72.6 \%$ | $77.2 \%$ | 0.08 |
| Spring 2022 | $78.2 \%$ | $61.8 \%$ | $70.9 \%$ | 0.05 |
| Fall 2022 | $75.9 \%$ | $65.3 \%$ | $71.0 \%$ | 0.09 |
| Spring 2023 |  |  |  | 0.06 |

Table 19. Mathematics courses' SLO assessment attainment and percentage point gap by equity group status, Area A: Communication and Analytical Thinking, All Semesters Combined, Fall 2018 - Spring 2023 (primary terms)

| All Semesters | Not in student <br> equity group | Students in <br> equity group(s) | Overall | Percentage <br> Point Gap |
| :--- | :---: | :---: | :---: | :---: |
| \% Met Outcome | $76.4 \%$ | $64.5 \%$ | $71.1 \%$ | 0.07 |
| Count of <br> Assessments | 32,349 | 26,367 | 58,716 | - |

Table 20. Non-mathematics courses' SLO assessment attainment and percentage point gap by equity group status, Area A: Communication and Analytical Thinking, Fall 2018-Spring 2023 (primary terms)

| Term | Not in student <br> equity group | Students in <br> equity group(s) | Overall | Percentage <br> Point Gap |
| :--- | :---: | :---: | :---: | :---: |
| Fall 2018 | $86.0 \%$ | $78.0 \%$ | $83.0 \%$ | 0.05 |
| Spring 2019 | $87.3 \%$ | $78.7 \%$ | $84.0 \%$ | 0.05 |
| Fall 2019 | $87.6 \%$ | $80.8 \%$ | $84.9 \%$ | 0.04 |
| Spring 2020 | $* *$ | $* *$ | $* *$ | $* *$ |
| Fall 2020 | $87.4 \%$ | $80.7 \%$ | $84.7 \%$ | 0.04 |
| Spring 2021 | $88.4 \%$ | $80.5 \%$ | $85.0 \%$ | 0.05 |
| Fall 2021 | $90.5 \%$ | $82.0 \%$ | $86.9 \%$ | 0.05 |
| Spring 2022 | $89.2 \%$ | $80.6 \%$ | $85.7 \%$ | 0.05 |
| Fall 2022 | $86.3 \%$ | $79.5 \%$ | $83.3 \%$ | 0.04 |
| Spring 2023 | $88.5 \%$ | $80.8 \%$ | $85.0 \%$ | 0.04 |

Table 21. Non-Mathematics courses' SLO assessment attainment and percentage point gap by equity group status, Area A: Communication and Analytical Thinking, All Semesters Combined, Fall 2018 - Spring 2023 (primary terms)

| All Semesters | Not in student <br> equity group | Students in <br> equity group(s) | Overall | Percentage <br> Point Gap |
| :--- | :---: | :---: | :---: | :---: |
| \% Met Outcome | $87.6 \%$ | $79.9 \%$ | $84.5 \%$ | 0.05 |
| Count of <br> Assessments | 54,265 | 37,235 | 91,500 | - |

## Comments and analysis on equity populations collectively

- CCSF students in equity populations continue to experience significant opportunity gaps (7\% gap overall in Mathematics courses in Area A and 5\% gap overall in nonMathematics courses).
- Throughout the pandemic, the size of the equity gap remained relatively consistent for non-Mathematics courses while it varied between 5 and 9 percent (without a clear trend increasing or decreasing) in the Mathematics courses in Area A.


## Cross-tabulation of age and equity status

The following two tables show the intersection of age and equity status (member or not of an equity group).

## Age and Student Equity Group

Table 22. Mathematics courses' SLO assessment counts and attainment by age and equity group, Area A: Communication and Analytical Thinking, Fall 2018 - Spring 2023 (primary terms)

| Age Group | Not in equity <br> group Count of <br> Assessment | Not in equity <br> group \% met <br> outcome | In equity <br> group <br> Count of <br> Assessment | In equity <br> group <br> \% met <br> outcome | All <br> students <br> \% met <br> outcome | Percentage <br> Point Gap |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 19 or Less | 11,813 | $72.5 \%$ | 8,564 | $61.3 \%$ | -- | 0.10 |
| $20-24$ | 9,999 | $74.8 \%$ | 8,319 | $61.1 \%$ | -- | 0.10 |
| $25-29$ | 4,734 | $78.6 \%$ | 4,332 | $71.4 \%$ | -- | -- |
| $30-34$ | 2,667 | $85.2 \%$ | 2,368 | $70.7 \%$ | -- | -- |
| $35-39$ | 1,573 | $82.6 \%$ | 1,367 | $67.1 \%$ | - | 0.04 |
| $40-49$ | 1,065 | $88.8 \%$ | 910 | $75.2 \%$ | - | -- |
| $50-59$ | 362 | $82.9 \%$ | 385 | $61.6 \%$ | - | 0.10 |
| $60+$ | 136 | $86.8 \%$ | 122 | $70.5 \%$ | -- | -- |
| All Ages | 32,349 | $76.4 \%$ | 26,367 | $64.5 \%$ | $71.1 \%$ | 0.07 |

Table 23. Non-mathematics courses' SLO assessment counts and attainment by age and equity group, Area A: Communication and Analytical Thinking, Fall 2018 - Spring 2023 (primary terms)

| Age Group | Not in equity <br> group <br> Count of <br> Assessment | Not in equity <br> group <br> \% met <br> outcome | In equity <br> group <br> Count of <br> Assessment | In equity <br> group <br> \% met <br> outcome | All <br> students <br> \% met <br> outcome | Percentage <br> Point Gap |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 19 or Less | 10,850 | $84.0 \%$ | 8,785 | $75.1 \%$ | -- | 0.09 |
| $20-24$ | 12,382 | $85.5 \%$ | 10,240 | $77.1 \%$ | -- | 0.07 |
| $25-29$ | 9,460 | $88.2 \%$ | 7,063 | $81.9 \%$ | - | -- |
| $30-34$ | 7,087 | $89.3 \%$ | 4,193 | $84.5 \%$ | - | -- |
| $35-39$ | 4,463 | $91.6 \%$ | 2,412 | $85.0 \%$ | -- | -- |
| $40-49$ | 4,595 | $89.9 \%$ | 2,424 | $87.7 \%$ | -- | -- |
| $50-59$ | 2,956 | $90.9 \%$ | 1,301 | $81.6 \%$ | - | -- |
| $60+$ | 2,472 | $91.7 \%$ | 811 | $84.0 \%$ | -- | -- |
| All Ages | 54,265 | $87.6 \%$ | 37,235 | $79.9 \%$ | $84.5 \%$ | 0.05 |

Area A - Non-mathematics Overall includes 6 assessments for students with unknown demographic information.

## Comments and analysis on cross tabulation of age with equity population

- In Mathematics courses in Area A, the age groups of equity population students experiencing the largest opportunity gaps (10\%) are those under 25 and in their 50 's. Students from equity populations and aged 35-39 also experience an opportunity gap (4\%) in these courses.
- In non-Mathematics courses, students from equity populations and aged 19 or less experience the largest opportunity gap (9\%), with their slightly older peers (aged 20-24) experiencing an opportunity gap of $7 \%$.
- Interestingly, most students over the age of 25 from equity populations in both Mathematics and non-Mathematics courses in Area A did not experience an opportunity gap (as defined by the state). However, at all ages, SLO attainment was higher among students not from equity populations than it was for the corresponding age group of students from equity populations.


## Course Completion Data Compared with SLO Attainment Data

Course completion or course success refers to a student finishing a course with a grade of $A, B$, C , or P . A course is not considered to be successfully completed if a student finished with a grade of D, F, NP, W, or EW. The data set for course completion included 25,435 students in Mathematics courses in Area A and 56,963 students in non-Mathematics courses in Area A. The data set for SLO attainment included 58,716 assessments in Mathematics courses in Area A and 91,500 assessments in non-Mathematics courses in Area A. This means that there were, on average, approximately two SLO assessments completed per student enrolled in the study period. Course completion data overall and by equity group/not in equity group are presented below.

Table 24. Mathematics course success rates by equity group status by semester, Area A: Communication and Analytical Thinking, Fall 2018 - Spring 2023 (primary terms)

| Course success - <br> Term | Not in student <br> equity group | Students in <br> equity group(s) | Overall | Percentage <br> Point Gap |
| :--- | :---: | :---: | :---: | :---: |
| Fall 2018 | $67.2 \%$ | $51.5 \%$ | $59.6 \%$ | 0.08 |
| Spring 2019 | $67.6 \%$ | $49.4 \%$ | $58.5 \%$ | 0.09 |
| Fall 2019 | $65.6 \%$ | $48.6 \%$ | $57.3 \%$ | 0.09 |
| Spring 2020 * | $* *$ | $* *$ | $* *$ | $* *$ |
| Fall 2020 | $73.3 \%$ | $53.0 \%$ | $63.9 \%$ | 0.11 |
| Spring 2021 | $43.6 \%$ | $55.7 \%$ | $64.7 \%$ | 0.09 |
| Fall 2021 | $69.4 \%$ | $47.0 \%$ | $58.8 \%$ | 0.12 |
| Spring 2022 | $71.8 \%$ | $50.9 \%$ | $61.5 \%$ | 0.11 |
| Fall 2022 | $72.9 \%$ | $53.0 \%$ | $63.1 \%$ | 0.10 |
| Spring 2023 | $74.2 \%$ | $55.0 \%$ | $64.7 \%$ | 0.10 |

Table 25. Mathematics course success rates by equity group status, all terms combined, Area A: Communication and Analytical Thinking, Fall 2018-Spring 2023 (primary terms)

| Course success - <br> All Terms | Not in student <br> equity group | Students in <br> equity group(s) | Overall | Percentage <br> Point Gap |
| :--- | :---: | :---: | :---: | :---: |
| $\%$ Course Success | $70.8 \%$ | $51.9 \%$ | $61.6 \%$ | 0.10 |
| $N=$ | 13,053 | 12,382 | 25,435 | -- |

Table 26. Non-mathematics course success by equity group status by semester, Area A: Communication and Analytical Thinking, Fall 2018 - Spring 2023 (primary terms)

| Course success - <br> Term | Not in student <br> equity group | Students in <br> equity group(s) | Overall | Percentage <br> Point Gap |
| :--- | :---: | :---: | :---: | :---: |
| Fall 2018 | $75.5 \%$ | $63.4 \%$ | $70.4 \%$ | 0.07 |
| Spring 2019 | $76.3 \%$ | $63.3 \%$ | $70.9 \%$ | 0.08 |
| Fall 2019 | $75.3 \%$ | $61.4 \%$ | $69.0 \%$ | 0.08 |
| Spring 2020* | $* *$ | $* *$ | $* *$ | $* *$ |
| Fall 2020 | $73.1 \%$ | $58.8 \%$ | $66.6 \%$ | 0.08 |
| Spring 2021 | $72.6 \%$ | $59.7 \%$ | $67.1 \%$ | 0.07 |
| Fall 2021 | $72.8 \%$ | $55.5 \%$ | $65.0 \%$ | 0.09 |
| Spring 2022 | $73.5 \%$ | $55.9 \%$ | $65.6 \%$ | 0.10 |
| Fall 2022 | $74.4 \%$ | $59.4 \%$ | $67.6 \%$ | 0.08 |
| Spring 2023 | $70.9 \%$ | $61.3 \%$ | $66.4 \%$ | 0.05 |

Table 27. Non-mathematics course success by equity group status, all terms combined, Area A: Communication and Analytical Thinking, All Terms Combined, Fall 2018 - Spring 2023 (primary terms)

| Course success - <br> All Terms | Not in student <br> equity group | Students in <br> equity group(s) | Overall | Percentage <br> Point Gap |
| :--- | :---: | :---: | :---: | :---: |
| $\%$ Course Success | $73.6 \%$ | $59.7 \%$ | $67.5 \%$ | 0.08 |
| $N=$ | 32,006 | 24,944 | 56,963 | - |

Table 28. Comparison of Mathematics course success and SLO attainment by equity group status, Area A: Communication and Analytical Thinking, Fall 2018 - Spring 2023 (primary terms)

| Area A - Mathematics - <br> Metric | Not in student <br> equity group | Students in <br> equity <br> group(s) | All <br> students | Percentage <br> Difference |
| :--- | :---: | :---: | :---: | :---: |
| \% met SLO standard | $76.4 \%$ | $64.5 \%$ | $71.1 \%$ | 0.07 |
| \% course success | $70.8 \%$ | $51.9 \%$ | $61.6 \%$ | 0.10 |

Table 29. Comparison of non-Mathematics course success and SLO attainment by equity group status, Area A: Communication and Analytical Thinking, Fall 2018 - Spring 2023 (primary terms)

| Area A -Non-mathematics - |
| :--- | :---: | :---: | :---: | :---: |
| Metric | | Not in student |
| :---: |
| equity group | | Students in |
| :---: |
| equity |
| group(s) |$\quad$ All students | Percentage |
| :---: |
| Difference |$|$

## Comments and analysis on course completion by semester and with equity data

- We see differences in the rates of course completion versus SLO attainment (for the Mathematics courses, $71 \%$ of students met the SLO while only $62 \%$ of students passed with a C or higher; for the non-Mathematics courses, $85 \%$ of students met the SLO while only $68 \%$ passed the class with a C or higher). This pattern is commonly found in other GELO reports, too, and may be explained by the fact that students who withdraw from a class are not assessed for SLO attainment but are included in course success data. In addition, course grades reflect all of a student's work for the semester, while SLO assessment usually focuses on a subset of assignments or exams that assess one SLO. It is not surprising that the two indicators are not identical.
- The size of the opportunity gaps in course completion also exceeded the size of the SLO opportunity gaps ( $10 \%$ vs. $7 \%$ in Mathematics courses, $5 \%$ vs $8 \%$ in non-Mathematics courses).
- There were some differences in the trends over time for the Mathematics and nonMathematics courses in Area A.
- While SLO proficiency in non-Mathematics courses held fairly stable in the study period, the course completion rates have varied, with a tendency toward slight decline.
- For Mathematics courses in Area A, the pattern of course completion more closely matches that of SLO proficiency, with both improving somewhat.
- Looking at Table 22, we see the opportunity gap slightly expanding over time for the Mathematics courses, despite a trend toward improved outcomes for both equity and nonequity populations. The improvement for nonequity populations appears to be greater than that for equity populations (for example, the improvement in course success seen between Fall 2019 and Fall 2020 was almost $8 \%$ for nonequity populations, and around $4.5 \%$ for equity populations).
- For non-Mathematics courses, course success in pandemic semesters for equity populations dropped to a greater degree than for nonequity populations. This led to a slightly greater opportunity gap at the end of the study period than at the beginning.
- Course completion in Mathematics courses (and possibly in other courses across the college that involve math or English skills) has been affected in the study period by the myriad changes brought about by both internal improvement efforts and the mandates of $A B 705$ and $A B 1705$. With the removal of remedial math classes, the addition of supportive instruction co-enrollment courses, intensification of tutoring, faculty learning communities, and more innovations, the rate of completion of college-level math courses within 2 semesters has increased for all students, those in equity populations and those not (though opportunity gaps remain). These changes may help to explain the increase in course success and the increase in SLO attainment that we see in this report for the Mathematics courses in Area A. See this Report to the Board Student Success and Policy Committee for more detail on the impacts of $A B 705$ and $A B 1705$.


## Discussion

- The Executive Summary at the front end of this report summarizes the main findings of this report, so no additional summary is provided here.
- Discussion with the SLO Committee highlighted the positive developments in Mathematics learning and course success, raising questions about what factors contributed to that rise. The continued steady proficiency at a high level in nonMathematics courses was also noted.
- Discussion with faculty in Area A primarily focused on additional questions that would be good to know the answer to, but that the data we have on Area A cannot answer at this time. These questions include,
- Do the math-content courses like ECON 5, PSYC 5, LALS 5, and BSMA 68 have results that follow the pattern in the Mathematics courses?
- To what extent do the support courses (like MATH 80S, MATH 90S) have an effect? Do we see greater SLO proficiency and/or greater course success and/or a smaller opportunity gap in math classes that are paired with a support course?
- How do the different tracks within math compare - for example, statistics, STEM (calculus), math for Humanities majors, etc.?
- For World Languages courses, which represent a very large segment of Area A, are there different patterns of student learning or course success found in different languages, or at different levels of study (e.g., beginning, intermediate, advanced, or written language focus vs. conversational)?
- Additional questions were raised about assessing the impact of support that is offered. For example, who is accessing tutors? Are classes with embedded tutors producing better learning outcome results than those without? What works to increase student engagement with the subject matter and/or support services?
- Prior to beginning the Area A assessment, the SLO coordinators asked at a Deans \& Chairs meeting about their questions that might be addressed in the GELO assessment process (fall 2023). Deans \& Chairs meeting was selected as the venue for this, given the broad swath of departments that offer courses in Area A. Most of the questions raised there were also not easily addressed by the types of data we have available on Area A. For example,
- What are the experiences of queer and trans students in Area A? This report has responded to this only in a minimal way, by reporting the absence of an opportunity gap for nonbinary students. One step of program - nonbinary students are no longer grouped together with "Sex/gender unknown" -- as the number of students identifying as nonbinary in Banner has increased, the data set size allows for analysis of this population.
- Several questions related to artificial intelligence were raised, but this report, unfortunately, offers no data to address those questions. Examples include, How are students developing their critical and analytical thinking skills in an era of increased misinformation/disinformation and artificial intelligence? And, Will
artificial intelligence uses increase or decrease the opportunity gaps for students from equity populations?
- A possibility for the future would be to organize a GELO report around a deep dive into a more limited number of questions and/or courses, to address questions that were not addressed this time.


## Wording of Area A outcomes

Often a GELO report will recommend improvements to the wording of the learning outcomes, to improve mapping, reflect changing priorities in the field, or align to our CSU or UC partners. However, currently, no changes to Area A outcomes are recommended; primarily because this is the final year of Area A as we have known it, and the final GELO report on Area A.

The GE pattern at the college is in the process of a transformation, in response to changes in Title 5. Starting in Fall 2024, courses previously mapped to Area A will be mapped to either the new Area 1B, Communication \& Critical Thinking, or Area 2, Mathematics \& Quantitative Reasoning.

New GELOs for both of these areas have been approved by the Curriculum Committee, the SLO Committee, and the Academic Senate and can be viewed in this Resolution, GE Outcomes Resolution Fall '24.pdf - Google Drive, as well as here below:

Area 1B-1: Oral Communication
A. Express ideas orally with clarity and purpose.
B. Identify and use culturally responsive communication practices.
C. Analyze the impacts of diverse communication practices on human interactions.

## Area 1B-2: Critical Thinking

A. Employ critical thinking and logical reasoning orally or in writing.
B. Analyze and synthesize support for an argument.
C. Evaluate communications and the use of information in context.

Area 2: Mathematical Concepts and Quantitative Reasoning
A. Use mathematical concepts to develop, present, and critique quantitative arguments.
B. Analyze and interpret quantitative information to solve mathematical problems.
C. Apply numerical, symbolic, graphical, and verbal methods to communicate mathematical results.

## APPENDICES

1. Presentations and resolutions
2. Methodological notes
3. Mappings of Course SLOs to Area A GELO
4. Accessible Tables

# Presentations and Resolutions Appendix 

Student Learning Outcomes Committee of the Academic Senate
Report approval, May 3, 2024
2023-2024 SLOC Meeting minutes
Executive Council of the Academic Senate
Resolution approval,May 8, 2024
Resolution 2024.05.08.7E GELO Area A Report

## Methodological Notes

## Definitions

Primary term refers to a fall semester or spring semester.
CCSF Equity group students are those that fall into one or more of the following categories:

- American Indian or Alaskan Native,
- Black or African American,
- Filipino,
- Latino/a/x,
- Native Hawaiian or other Pacific Islander,
- current or former foster youth,
- students with disabilities,
- students experiencing homelessness, and
- students who identify as transgender or nonbinary gender identities.
- Students who are justice impacted or formerly incarcerated. (data not currently available for this population but are an equity population at CCSF)

In Spring 2018, the CCCCO added students who identify as LGBT as a student equity group. That group, in its entirety, is not identified in this dataset because the college does not currently maintain any local data regarding student's sexual orientation. CCSF does have an incomplete subset of locally available data regarding student's gender identity, thus students who identify as transgender or a nonbinary gender identity are included as students belonging to a student equity group.

While it is understood the terms gender and sex represent separate, distinct constructs, they are displayed together in order to accurately represent the underlying data. The language on the questionnaire that collects this demographic data has changed over time and some response options have referred to sex and others to gender, creating a dataset that includes response categories for both gender and sex, combined.

Financial aid, disability services, foster youth, housing, and military service statuses each include all students who have ever received the services or benefits for that group.

Percentage point gap is a method developed by California Community Colleges Chancellors' office to measure disproportionate impact, with guidelines to better understand the
disaggregated subgroups that are significantly impacted. The detection of disproportionate impact uses a threshold which is adjusted by the sample size of the subgroup, to compare with the percentage point gap. In this report,

- percentage point gap (PPG) $=[$ (\% of subgroup) $-($ overall \%) $]$ * (-1)
- threshold $=3 \%$ based on the sample size of subgroup ( $n \geq 800$ )

If percentage point gap (PPG) $\geq 3 \%$, a disproportionate impact with statistically significance was detected, otherwise no gap exists.

Because small sample sizes do not provide statistically meaningful results, in order to protect student privacy when disaggregating student data, the following thresholds were set for data display:

- Where the count of students is less than 30, outcome data are not displayed. However, while cells with small counts are masked from display, overall totals and averages always include all assessments among all groups.
- To keep cell sizes above 30 wherever possible, this analysis aggregates across terms or combines groups as appropriate.


## Source

Data prepared by: Chloe Rickards, Research Analyst, Carol Liu, Research Analyst Report prepared by: Carol Liu, Research Analyst
Databases: CurrIQunet, Banner
Date extracted: 12-06-2024 from CurrIQunet; 01-19-2024 from Banner

## Mappings of Course SLOs to Area A GELO

## Area A Course to GELO Mappings

Downloaded Oct. 30, 2023

## Accessible Tables

Table 6a. Mathematics courses' GELO assessment counts and attainment levels in Area A: Communication and Analytical Thinking Fall 2018 - Spring 2023 (primary terms)

| GELO | Meets <br> SLO | Developing <br> SLO | No <br> evidence <br> of SLO | Total |
| :--- | :--- | :--- | :--- | :--- |
| 1. Apply the principles of language toward logical <br> thought. | $71.8 \%$ | $16.1 \%$ | $12.1 \%$ | $\mathbf{1 8 , 2 6 1}$ |
| 2. Express ideas with clarity and precision. | $70.5 \%$ | $16.9 \%$ | $12.6 \%$ | $\mathbf{2 4 , 3 1 0}$ |
| 3. Evaluate communications in whatever symbol <br> system is employed. | $\mathbf{7 1 . 1 \%}$ | $\mathbf{1 7 . 0} \%$ | $11.9 \%$ | $\mathbf{1 6 , 1 4 5}$ |
| Total | $\mathbf{4 1 , 7 2 2}$ | $\mathbf{9 , 8 1 6}$ | $\mathbf{7 , 1 7 8}$ | $\mathbf{5 8 , 7 1 6}$ |

Table 6b. Non-Mathematics courses' GELO assessment counts and attainment levels in Area A: Communication and Analytical Thinking Fall 2018 - Spring 2023 (primary terms)

| GELO | Meets <br> SLO | Developing <br> SLO | No <br> evidence <br> of SLO | Total |
| :--- | :--- | :--- | :--- | :--- |
| 1. Apply the principles of language toward logical <br> thought. | $83.8 \%$ | $10.7 \%$ | $5.6 \%$ | $\mathbf{3 5 , 4 5 0}$ |
| 2. Express ideas with clarity and precision. | $84.8 \%$ | $10.0 \%$ | $5.2 \%$ | $\mathbf{2 8 , 5 9 6}$ |
| 3. Evaluate communications in whatever symbol <br> system is employed. | $85.1 \%$ | $9.8 \%$ | $5.1 \%$ | $\mathbf{2 7 , 4 5 4}$ |
| Total | $\mathbf{7 7 , 3 0 4}$ | $\mathbf{9 , 3 4 0}$ | $\mathbf{4 , 8 5 6}$ | $\mathbf{9 1 , 5 0 0}$ |

Table 11a. Dual enrollment students' SLO assessment counts and attainment, Area A: Communication and Analytical Thinking, Fall 2018-Spring 2023 (primary terms)

| Area A | Count of assessments | \% met outcome |
| :--- | :---: | :---: |
| Area A - Mathematics | 649 | $84.6 \%$ |
| Area A - Non-Mathematics | 3,749 | $84.6 \%$ |
| Overall | 4,398 | $84.6 \%$ |

Table 11b. All students' SLO assessment counts and attainment, Area A: Communication and Analytical Thinking, Fall 2018 - Spring 2023 (primary terms); presented to compare with the dual enrollment data in Table 11a.

| Area A | Count of assessments | \% met outcome |
| :--- | :---: | :---: |
| Area A - Mathematics | 58,716 | $71.1 \%$ |
| Area A - Non-Mathematics | 91,500 | $84.5 \%$ |
| Overall | 150,216 | $79.2 \%$ |


[^0]:    ${ }^{1}$ The 2014 Area A report has a small data set including assessments from months April through October during spring and fall semesters 2014. The 2018 Area A report has a larger data set Spring 2015 through Spring 2017, a total of 5 semesters. The 2024 Area A report has the largest data set including assessments from Fall 2018 through Spring 2023, a total of 10 semesters. All reports exclude assessments reported during the summer sessions.

